
Semantic Tooling at Twitter
Eugene Burmako, Stu Hood

Agenda
● State of developer tools at Twitter

● Vision of nextgen semantic tooling

● Proposed technology stack

S

twitter

State of the code
● Monorepo

● Consistent build

○ Now: retain agility!

● Persistent rumor: “Twitter is writing less Scala”

○ False.

○ JDK8 landed in Source about 1 year ago. In that period:

■ Scala codebase grew by 35%

■ Java codebase grew by 19%

Rewind: Monorepos? Monorepos.
● No diamonds

● Atomic cross-project changes

● Top-to-bottom continuous integration testing

● Linear change history

● No binary incompatibilities except at the boundary

○ ...although really just an argument for source distributions...?

Achieving the promise of a monorepo
● Requires tooling!

○ Previous talk: Pants (ref).

○ Previous talk: dependency hygiene (ref).

○ Today: semantic tooling!

● “Avoid deprecations in the common

case”

○ Dead code in a monorepo is not like

dead code in polyrepos!

● Rewriting `Future.get` to `Await.result`

(last year) required a custom compiler

plugin

0899f3e util-core: Remove deprecated method Future.get(Duration)

 28 files changed, 293 insertions(+), 210 deletions(-)

60b8b21 util-core: Remove deprecated Future.get

 53 files changed, 403 insertions(+), 299 deletions(-)

6ed301d Replace calls to Future.get with Await.result

 116 files changed, 1113 insertions(+), 956 deletions(-)

7deee17 Replace calls to Future.get with Await.result

 131 files changed, 923 insertions(+), 760 deletions(-)

2855fa4 Replace calls to Future.get with Await.result

 174 files changed, 1476 insertions(+), 1222 deletions(-)

dfe0002 Replace calls to Future.get with Await.result

 51 files changed, 991 insertions(+), 688 deletions(-)

da6f09c Replace calls to Future.get with Await.result

 80 files changed, 815 insertions(+), 535 deletions(-)

https://www.youtube.com/watch?v=wu4pEmYWk6A
http://www.pantsbuild.org/jvm_projects.html#dependency-hygiene

State of semantic tooling
● Very coarse via target level dependencies:

○ ~2^16 targets, ~2^14 roots (tests+binaries)

● Slightly finer (class-level) semantic information via zinc analysis

○ ~2^22 class files

● Very fast text/regex based indexes

● Symbol level information available only in IDEs

● Very old Sourcegraph install recently deprecated

○ Legacy code for both companies: missing features, fragile integration

■ Compiler plugin specific to 1) Sourcegraph, 2) a compiler version

● *but are moving toward using LSP extensions (ref)

○ But great direction! Not ruling out future open source collaboration.

https://github.com/sourcegraph/language-server-protocol/pull/17

vision

Code comprehension
● Table stakes; must be:

○ Orders of magnitude faster than grep

○ Find references-to

○ Find definition-of a symbol

● Going further toward understanding with:

○ Inheritance relationships

○ Documentation

○ Type awareness

Code review
● Context available for a patch

○ Warnings/errors from the compiler

○ Definitions/references

Code evolution
● Deprecations should be completely unnecessary for code that doesn’t escape the

closed world!

● Decide whether to refactor...

○ Explore class/trait relationships

○ Filter calls by the call graph

● Then execute.

○ Scalafix!

○ Generic rewrite tools possible?

Executing the vision
● High resolution, antifragile semantic extraction...

● Distributed, language-agnostic* semantic index...

● Integration with language-agnostic tools...

E

scalameta
http://scalameta.org/

Nextgen metaprogramming library for Scala
● Syntactic API (2014-)

○ Tokens

○ Abstract syntax trees

○ Parsers

○ Quasiquotes

● Semantic API (2017-)

○ An independent open-source foundation for semantic tools

○ Already used at Twitter and at the Scala Center

○ Recently published technology preview within scalameta 1.6.0

Old-school semantic tooling for Scala
● Write a compiler plugin that runs after typer

● import global._

● Fight with compiler internals

● Rewrite your tool when a new minor version of Scala is released

Why old school didn’t work
Huge surface of the compiler API

● Tens of thousands LOC

● Dozens of different modules

● Thousands of different methods

First attempt (scalareflect, 2011)
● Reduce the API surface to several hundred most popular methods

● Guarantee stability across minor and even major Scala releases

Second attempt (scalameta, 2014)
● Further “compress” the API surface to several dozen most popular methods

● New data structures to enable new “compressed” APIs

● Convert back and forth between compiler and new data structures

Why these attempts didn’t work
Still using compiler data structures

● Immense data schema

● Very involved pre- and postconditions

● Require a running compiler

● Not serializable

Third attempt (scalameta, 2017)
● Dumb data schema to represent semantic information

● Give up on bidirectional interop with compiler data structures

● Still use the significantly reduced API surface from the second attempt

Semantic database
● Extremely simple data schema

● ~50 lines of protobuf code

● Supports resolved names, compiler messages and symbol denotations

● Technology preview for Scala 2.11.11 and Scala 2.12.2

example

package com.example

class Printer {

 def print(msg: String): Unit =

 println(msg)

}

object Example {

 def main(args: Array[String]): Unit = {

 val msg = "Hello World"

 // Comment.

 new Printer().print(msg)

 }

}

Live demo: semantic db for an example Scala file

Early feedback
● Semantic databases are extremely hackable

● Spawned a family of semantic tools that run outside the compiler

● Great potential for portability

● Great potential for scalability

● Simplicity of data schemas is seriously underrated

S

kythe
https://kythe.io/

Kythe: What is it?
● Common interchange/schema for semantic information about code

○ Symbol definitions/references

○ Callgraphs

○ Inheritance relationships

○ Generic/templated type information

● An index containing lots of relationships and kinds

○ ie: more than just “ref” and “def” (as found in most symbol indexes)

● ...how many relationships?

aliases

aliases/root

annotatedby

bounded/{upper,lower}

childof

childof/context

completes

completes/uniquely

defines

defines/binding

Kythe: A schema for a graph...
depends

documents

extends

generates

instantiates

instantiates/speculative

overrides

overrides/root

overrides/transitive

param

ref

ref/call

ref/doc

ref/expands

ref/expands/transitive

ref/imports

ref/includes

ref/queries

satisfies

specializes

typed

undefines

code

doc/uri

abs

absvar

anchor

constant

doc

file

interface

function

lookup

macro

meta

package

process

record

sum

talias

tapp

tbuiltin

tnominal

tsigma

variable

vcs

...

A Graph.
Viz courtesy of Benjy Weinberger

Kythe: Value proposition
● Hub-and-spoke

○ Write once, run on any codebase

● Multi-language/platform

○ C++, Go, Java, Protobuf, Common Lisp

○ In-progress implementations for: Python, ES6, Typescript… Scala

● Support for very large graphs

○ Index for Chromium (~2^24 LOC) is ~50GB

● From Twitter’s perspective:

○ Java, Scala on the “same” platform

○ Python, Go, Javascript on their own platforms

○ thrift and protobuf on all the platofmrs

Kythe: Language-agnostic tooling?
● Included:

○ xrefs server and API

○ Complex graph queries with, eg. Cayley.io

○ Simple-but-powerful cli tool

○ Import/export as triples/quads/ctags/etc

○ Example call-graph analyses

○ Toy code browser UI

● Possible:

○ Documentation browser?

○ Code Analytics?

○ Incremental compilation?

○ Dead code elimination via call-graph analysis?

Kythe: Adding Scala support
● Most “functional” of the supported languages

○ ...but similarly abstraction-rich to C++, which also supports HKT.

● Necessary to integrate with Java

○ ie: have a uniform “key” for a symbol defined by Java

○ ...ideally without a dependency on javac.

scalameta-kythe
● Implementation

○ Uses a scalameta Mirror to consume semantic dbs

○ Walks the scalameta AST and consumes Symbols and Denotations to index

○ Uses Kythe’s Java API to emit “entries” (essentially: triples)

● Supported so far:

○ A few definition nodes and their anchors

■ class, object, def, parameters, type application

○ A few relationships

■ childof, defines, ref(erences), param.0-N, typed

example

Take that same Scala file...

package com.example

class Printer {

 def print(msg: String): Unit =

 println(msg)

}

object Example {

 def main(args: Array[String]): Unit = {

 val msg = "Hello World"

 // Comment.

 new Printer().print(msg)

 }

}

...Build using the scalahost compiler plugin...

...Emit kythe “entries” using the scalameta-kythe indexer...

Render the resulting graph.
Viz courtesy of Benjy Weinberger

Highlight nodes along an interesting path...

A function is a childof a class...

And that function is ref/call’d from a particular anchor.

That anchor is childof (ie: a statement in) another function...

Which is typed as a tapp (type application) of...

...two params: the builtins Array and String. Array[String].

Kythe: With Pants
● Integration with JVM languages supported by pants

○ Emit directly to a kythe API server?

■ ./pants --kythe-api=$servers index ::

○ Send to a DFS and then aggregate?

■ ./pants --kythe-out=$file index ::

○ Scalafix all targets owning files matching a query?

■ ./pants --kythe-api=$servers --kythe-query=$query fmt

● Initial support landed this week!

○ github.com/pantsbuild/pants/pull/4457

Kythe: Complexity / generality
● Adapting all languages to fit a particular schema is a monumental challenge

● Likely to never contain specific enough information for certain relationships

● But appears to be useful for 5-6 languages so far.

E

summary

Vision
Scalable semantic tooling for Scala and beyond:

● Code comprehension

● Code review

● Code evolution

● ...

Technology stack
● Extraction of semantic information (scalameta!)

○ Standalone data schema independent from a particular compiler

○ Portable across Scala implementations (Scala 2.x, Scala 3, IDEs)

○ Consumers are abstracted from compiler internals

● Indexing of semantic information (kythe?)

○ Distributed graph storage and indexes

○ Integration with all relevant languages

● Integration with language-agnostic tools

Status
● Draft specification of semantic dbs

○ Data schema that includes positions, symbols and denotations

○ Uses compiler-independent formulations of these concepts

● Technology preview of scalameta extraction into semantic dbs

○ Available in scalameta since 1.6.0

○ Supports Scala 2.11.11 and 2.12.2

○ Ongoing project to support Dotty

● Prototype of kythe indexing for semantic dbs

○ Using snapshot builds of scalameta 1.8.0

○ Technology preview will be open-sourced soon

Future work
● Integration with Twitter’s internal code search

● Integration with Phabricator

○ via ctags

● Further collaboration with Scalafix

● Keep an eye on TASTY

● Keep an eye on Sourcegraph

Credits
● Ólafur Páll Geirsson who co-designed the API and battle-tested it in Scalafix

● Fengyun Liu who influenced our design and started integration with Dotty

● Benjy Weinberger whose explanations of his pet project finally clicked

● pants, scala, scalameta, and kythe contributors … like you!

Twitter is hiring!
● One of the largest Scala shops in the world

● Exciting research into developer tools

● Build team

○ Distributed compilation and testing

○ Semantic Indexing

○ IDE Integrations

○ (definitely more than just configuration wrangling!)

Questions?

