?,\—A O,q
»

W2=S0
>

()
CAGOQ'

Semantic Tooling at Twitter

Eugene Burmako, Stu Hood

Please use the
Scala Days app
to rate sessions.

3 Join the conversation #scaladays

Agenda

State of developer tools at Twitter
Vision of nextgen semantic tooling
Proposed technology stack

twitter

State of the code

Monorepo

Consistent build
Now: retain agility!

Persistent rumor: “Twitter is writing less Scala”
False.
JDKS8 landed in Source about 1 year ago. In that period:

Scala codebase grew by 35%
Java codebase grew by 19%

Rewind: Monorepos? Monorepos.

No diamonds

Atomic cross-project changes

Top-to-bottom continuous integration testing
Linear change history

No binary incompatibilities except at the boundary

..although really just an argument for source distributions...?

Achieving the promise of a monorepo

Requires tooling!
Previous talk: Pants (ref).
Previous talk: dependency hygiene (ref).
Today: semantic tooling!

“Avoid deprecations in the common
case”

Dead code in a monorepo is not like
dead code in polyrepos!

Rewriting "Future.get to "Awaitresult
(last year) required a custom compiler

lugi
plugin

0899f3e util-core: Remove deprecated method Future.get(Duration)
28 files changed, 293 insertions(+), 210 deletions(-)
60b8b21 util-core: Remove deprecated Future.get

53 files changed, 403 insertions(+), 299 deletions(-)
6ed301d Replace calls to Future.get with Await.result

116 files changed, 1113 insertions(+), 956 deletions(-)
7deeel7 Replace calls to Future.get with Await.result

131 files changed, 923 insertions(+), 760 deletions(-)
2855fa4 Replace calls to Future.get with Await.result

174 files changed, 1476 insertions(+), 1222 deletions(-)
dfe0002 Replace calls to Future.get with Await.result

51 files changed, 991 insertions(+), 688 deletions(-)
da6f@9c Replace calls to Future.get with Await.result

80 files changed, 815 insertions(+), 535 deletions(-)

https://www.youtube.com/watch?v=wu4pEmYWk6A
http://www.pantsbuild.org/jvm_projects.html#dependency-hygiene

State of semantic tooling

Very coarse via target level dependencies:
~2/716 targets, ~2/\14 roots (tests+binaries)

Slightly finer (class-level) semantic information via zinc analysis
~2/22 class files

Very fast text/regex based indexes

Symbol level information available only in IDEs

Very old Sourcegraph install recently deprecated

Legacy code for both companies: missing features, fragile integration
Compiler plugin specific to 1) Sourcegraph, 2) a compiler version
*but are moving toward using LSP extensions (ref)
But great direction! Not ruling out future open source collaboration.

https://github.com/sourcegraph/language-server-protocol/pull/17

vision

Code comprehension

Table stakes; must be:
Orders of magnitude faster than grep
Find references-to
Find definition-of a symbol

Going further toward understanding with:
Inheritance relationships
Documentation
Type awareness

Code review

Context available for a patch
Warnings/errors from the compiler
Definitions/references

Code evolution

Deprecations should be completely unnecessary for code that doesn’t escape the
closed world!
Decide whether to refactor...

Explore class/trait relationships

Filter calls by the call graph
Then execute.

Scalafix!

Generic rewrite tools possible?

Executing the vision

High resolution, antifragile semantic extraction...
Distributed, language-agnostic* semantic index..
Integration with language-agnostic tools..

scalameta

tttttttttttttttttt

Nextgen metaprogramming library for Scala

Syntactic API (2014-)
Tokens
Abstract syntax trees
Parsers
Quasiquotes

Semantic API (2017-)

An independent open-source foundation for semantic tools
Already used at Twitter and at the Scala Center
Recently published technology preview within scalameta 1.6.0

Old-school semantic tooling for Scala

Write a compiler plugin that runs after typer
import global._

Fight with compiler internals

Rewrite your tool when a new minor version of Scala is released

Why old school didn’t work

Huge surface of the compiler API

Tens of thousands LOC

Dozens of different modules
Thousands of different methods

First attempt (scalareflect, 2011)

Reduce the API surface to several hundred most popular methods
Guarantee stability across minor and even major Scala releases

Second attempt (scalameta, 2014)

Further “compress” the API surface to several dozen most popular methods
New data structures to enable new “compressed” APIs
Convert back and forth between compiler and new data structures

Why these attempts didn’t work

Still using compiler data structures

Immense data schema

Very involved pre- and postconditions
Require a running compiler

Not serializable

Third attempt (scalameta, 201/)

Dumb data schema to represent semantic information
Give up on bidirectional interop with compiler data structures
Still use the significantly reduced API surface from the second attempt

Semantic database

Extremely simple data schema

~50 lines of protobuf code

Supports resolved names, compiler messages and symbol denotations
Technology preview for Scala 2.11.11 and Scala 2.12.2

example

Live demo: semantic db for an example Scala file

package

class {
def (msg:): Unit =
println(msg)
}

object {
def (args: [String]): Unit = {
val = "Hello World"
// Comment.
new () .print(msg)
}
}

Early feedback

Semantic databases are extremely hackable

Spawned a family of semantic tools that run outside the compiler
Great potential for portability

Great potential for scalability

Simplicity of data schemas is seriously underrated

kythe

https://kythe.io/

Kythe: What is it?

Common interchange/schema for semantic information about code
Symbol definitions/references
Callgraphs
Inheritance relationships
Generic/templated type information
An index containing lots of relationships and kinds

ie: more than just “ref” and “def” (as found in most symbol indexes)

..how many relationships?

Kythe: A schema for a graph...

aliases
aliases/root

annotatedby

bounded/{upper,lower}

childof
childof/context
completes
completes/uniquely
defines

defines/binding

depends

documents

extends

generates

instantiates
instantiates/speculative
overrides
overrides/root
overrides/transitive

param

ref

ref/call

ref/doc

ref/expands
ref/expands/transitive
ref/imports
ref/includes
ref/queries

satisfies

specializes

typed
undefines
code
doc/uri
abs
absvar
anchor
constant
doc

file

interface
function
lookup
macro
meta
package
process
record
sum

talias

tapp

tbuiltin
tnominal
tsigma
variable

VCs

fe—

yleelptysd

-

raph.

Kythe: Value proposition

Hub-and-spoke

Write once, run on any codebase
Multi-language/platform

C++, Go, Java, Protobuf, Common Lisp

In-progress implementations for: Python, ES6, Typescript... Scala
Support for very large graphs

Index for Chromium (~2224 LOC) is ~50GB

From Twitter’s perspective:

Java, Scala on the “same” platform
Python, Go, Javascript on their own platforms
thrift and protobuf on all the platofmrs

Kythe: Language-agnostic tooling?

Included:

xrefs server and API

Complex graph queries with, eg. Cayley.io
Simple-but-powerful cli tool
Import/export as triples/quads/ctags/etc
Example call-graph analyses

Toy code browser Ul

Possible:
Documentation browser?
Code Analytics?
Incremental compilation?
Dead code elimination via call-graph analysis?

Kythe: Adding Scala support

Most “functional” of the supported languages
..but similarly abstraction-rich to C++, which also supports HKT.
Necessary to integrate with Java

ie: have a uniform “key” for a symbol defined by Java
.ideally without a dependency on javac.

scalameta-kythe

Implementation
Uses a scalameta Mirror to consume semantic dbs
Walks the scalameta AST and consumes Symbols and Denotations to index
Uses Kythe’s Java API to emit “entries” (essentially: triples)

Supported so far:
A few definition nodes and their anchors
class, object, def, parameters, type application
A few relationships
childof, defines, ref(erences), param.0-N, typed

example

package

class {
def (msg:): Unit =
println(msg)
}
object {
def (args: [String]): Unit = {
val = "Hello World"
// Comment.
new () .print(msg)
}
}

Take that same Scala file...

..Build using the scalahost compiler plugin...

..Emit kythe “entries” using the scalameta-kythe indexer...

s i)l s S = g Wl G, s o) ot 1}

-

\QWW,.J"R..,_” 7’5“—”’3"'"”

Render the resulting graph.

Kytherloc/end: 216

ythe 197

Jkythernodedings: anchor

Tkytheledgeidefin

Ikythelecigeldefines

ehtext: package com.example
_ 2 eitentiencadiog: UTF.

—————

Aytbefsubkind: clas:

odefking: thuiltin

Highlight nodes along an interesting path...

fkythe/edge/defines

function root .com.example.Printer#print (Ljava/la
/kythe/node/kind: function

/

———

/kythe/edge/childof

/kythe/edge/defines \ /kythe/edge/defines / /kythe/edge/childof /kythe/edge/param.0

nple.Printer#

fkythe/subkind: class

A function is a childof a class...

216
197

anchor

er#print (Lj

/kythe/edge/childof : £
/kind: function

And that function is ref/call’d from a particular anchor.

mple.Exan

/kythe/noderki:

ain([Lja

/kythe/edge/childof

s

function

> * = e

That anchor is childof (ie: a statement in) another function...

/kythe/subkind: local/parameter

/kythe/edge/typed

Which is typed as a tapp (type application) of...

/kythe/edge/rel /kythe/edge/ref

N:\‘dgw'l_\ ped

cala.Predef.String#]

P

/kythe/edge/param.0 /kythe/edge/param. 1

——__“—_“——_

tbuiltin _root .scala.Array# .scala.Predef.String#

fkythe/node/kind: tbuiltin /kythe/node/kind: thuiltin

..two params: the builtins Array and String. Array[String].

Kythe: With Pants

Integration with JVM languages supported by pants
Emit directly to a kythe API server?
Jpants --kythe-api=$servers index :
Send to a DFS and then aggregate?
Jpants --kythe-out=$file index :
Scalafix all targets owning files matching a query?
Jpants --kythe-api=$servers --kythe-query=$query fmt
Initial support landed this week!
github.com/pantsbuild/pants/pull/4457

Kythe: Complexity / generality

Adapting all languages to fit a particular schema is a monumental challenge
Likely to never contain specific enough information for certain relationships
But appears to be useful for 5-6 languages so far.

summary

Vision
Scalable semantic tooling for Scala and beyond:

Code comprehension
Code review
Code evolution

Technology stack

Extraction of semantic information (scalametal)
Standalone data schema independent from a particular compiler
Portable across Scala implementations (Scala 2.x, Scala 3, IDEs)
Consumers are abstracted from compiler internals

Indexing of semantic information (kythe?)

Distributed graph storage and indexes

Integration with all relevant languages

Integration with language-agnostic tools

Status

Draft specification of semantic dbs
Data schema that includes positions, symbols and denotations
Uses compiler-independent formulations of these concepts
Technology preview of scalameta extraction into semantic dbs
Available in scalameta since 1.6.0
Supports Scala 2.11.11 and 2.12.2
Ongoing project to support Dotty
Prototype of kythe indexing for semantic dbs

Using snapshot builds of scalameta 1.8.0
Technology preview will be open-sourced soon

Future work

Integration with Twitter’s internal code search
Integration with Phabricator

via ctags
Further collaboration with Scalafix
Keep an eye on TASTY

Keep an eye on Sourcegraph

Credits

Olafur P4ll Geirsson who co-designed the API and battle-tested it in Scalafix
Fengyun Liu who influenced our design and started integration with Dotty
Benjy Weinberger whose explanations of his pet project finally clicked
pants, scala, scalameta, and kythe contributors ... like you!

Twitter is hiring!

One of the largest Scala shops in the world
Exciting research into developer tools

Build team
Distributed compilation and testing
Semantic Indexing
IDE Integrations
(definitely more than just configuration wrangling!)

Questions?

