How We Built Tools That Scale to
Millions of Lines of Code

Eugene Burmako
Twitter, Inc.

6/20/2018

About me

Founder of Scala macros, Scalameta and Rsc

Member of the Scala Improvement Process committee

PhD from Martin Odersky’s lab at EPFL (2011-2016)

Tech lead of the Advanced Scala Tools team at Twitter (2017-present)

Credits

Core contributors

Advanced Scala Tools team at Twitter:

e FEugene Burmako
e Shane Delmore
e Uma Srinivasan

Early adopters

Build team

Continuous Integration team
Code Review team

Core Data Libraries team
Core Systems Libraries team
Other folks at Twitter

scalameta /' scalameta -

> Code (D) Issues 136

ulse
ontributors
ommunity

-affic

ommits

de frequency
pendency graph
twork

rks

W TV TV ¥ LTI Ak

stober April October April October April October April April October April October April October April October April

@ Unwatch~ | 52 | | JStar | 633 | | Fork | 132 | &'

{1 Pull requests 0 lili Insights 4+ Settings

Mar 2, 2014 - Jun 16, 2018 Contributions: Commits v P

C

Contributions to master, excluding merge commits
C
120 T

100

80 (0)
loan A A A ‘ A
40 Cc
20

o A : e : De

April July October 2015 April July October 2016 April July October 2017 Aprii July October 2018 April

¥ 3,275 commits 441,055 ++ 420,749 --

100

Ne

olafurpg #2 | Fo

648 commits 113,877 ++ 86,816 --

n

April O

Problem statement

Huge codebase (ca. 2017)

o ~2/25 lines of human-written code
o ~2/M6 targets

Need for semantic tooling (ca. 2017)

e Not enough to treat programs like text

e Need to understand semantics:

What does this identifier resolve t0?
What are all the usages of this definition?
What is the type of this expression?

Etc etc.

O O O O

Prioritized user asks (ca. 2017)

e (Code browsing
e (Code review
e (Code evolution

10

State of semantic tooling (ca. 2017)

Code browsing = IDEs, but IDEs couldn't load entire Twitter source
Code review = Phabricator, which didn’t have Scala integration
Code evolution = scala-refactoring, which didn’t have a maintainer
Also, several proprietary solutions with varied Scala support

11

Advanced Scala Tools team

e Founded in June 2017
e Mission: “Raise the bar on what is possible for an effective Scala

development environment both at Twitter and in the Scala community”
e Roadmap: improve code browsing, code review and code evolution in the

Twitter development workflow

12

Existing semantic APlIs

Existing semantic APIs (ca. 2017)

e Scala compiler internals
e Scala.reflect (thin wrapper over compiler internals)
e ScalaSignatures (serialization format for compiler internals)

14

Blocker #1: Learning curve

e Compiler internals span dozens of modules and thousands of methods
e Complicated data model and arcane preconditions for the APIs
e | did a PhD in Scalac internals, but still can’t make sense of all that

15

Blocker #2: Scarce documentation

e Scala requires an extensive semantic API
e This requires lots and lots of documentation
e Even for scala.reflect, the documentation is significantly lagging behind

16

Blocker #3: Compiler instance

e Compiler internals require a compiler instance
e This means poor performance even for simple operations like “Go to

definition” or “Find all usages”
e Tools that use Scala compiler internals either roll their own indexer or

accept the limitations

17

Future semantic APIs

Future semantic APIs (ca. 2020)

e Scala.reflect is based on Scala compiler internals, so it was discarded
e Meet Tasty - serialization format for Dotty compiler internals
e Used in Dotty IDE and the upcoming Dotty macro system

19

library/src/scala/tasty/Tasty.scala

abstract class Tasty {

// DefDef

type DefDef <: Definition

implicit def defDefClassTag: ClassTag[DefDef]
val DefDef: DefDefExtractor

20

library/src/scala/tasty/Universe.scala

trait Universe {
val tasty: Tasty
implicit val context: tasty.Context

}

object Universe {
implicit def compilationUniverse: Universe = throw new
Exception("Not in inline macro.")

}

21

compiler/.../CompilationUniverse.scala

import dotty.tools.dotc.core.Contexts.Context

class CompilationUniverse(val context: Context) extends
scala.tasty.Universe {

val tasty: TastyImpl.type = TastyImpl
}

22

In its current form, Tasty looks very similar to scala.reflect, but
reimplemented for Dotty

Still based on compiler internals

Still underdocumented

Still requires a compiler instance

23

Rolling our own semantic APIs

24

Scalameta (ca. 2018)

More than 10 projects

More than 10000 commits

More than 200 contributors

Funded by Twitter and Scala Center

26

SemanticDB

Data model for semantic information about programs

Focused on what tool writers need from the compiler...

...not on what is convenient to expose in the compiler

Collaboration between Eugene Burmako (a compiler writer) and Olafur Pall
Geirsson (a tool writer)

27

Interchange format

message TextDocument {
Schema schema = 1;
string uri = 2;
string text = 3;
Language language = 10;
repeated SymbolInformation symbols = 5;
repeated SymbolOccurrence occurrences = 6;
repeated Diagnhostic diagnostics = 7;
repeated Synthetic synthetics = 8;

28

object Test {
def main(args: Array[String]): Unit = {
println("hello world")
h

}

29

$ scalac -Xplugin:our/plugin.jar Test.scala
// Alternatively: metac Test.scala

$ find .
./META-INF

./META-INF/Test.scala.semanticdb
./Test.scala

30

Payload

$ xxd META-INF/semanticdb/Test.scala.semanticdb

00000000 :
00000010
00000020 :
00000030 :
00000040 :
00000050 :
00000060 :
00000070 :
00000080 :

Qaed
6l1lla
0a20
3a20
3a20
7269
726¢C
5f65
6e28

0408
596f
2064
4172
556e
6e74
6422
6d70
292e

0312
626a
6566
7261
6974
6cbe
290a
7479
2861

Qa54
6563
206d
795b
203d
2822
2020
5f2e
7267

6573
7420
6169
5374
207b
6865
7d0a
5465
7329

742e
5465
6e28
7269
0a20
6Cc6C
7d0a
7374
1808

7363
7374
6172
6e67
2020
6120
2a5b
2e6d
2204

616cC
207b
6773
5d29
2070
776f
Pala
6169
6172

....... Test.scal
a.Yobject Test {

def main(args
: Array[String])
: Unit = {. p
rintln("hello wo
rld"). }.}.*[..
_empty .Test.mai
n().(args)..*.ar

31

Payload

$ metap .

Summary:

Schema => SemanticDB v3
Uri => Test.scala

Text => non-empty
Language => Scala
Symbols => 3 entries
Occurrences => 7 entries

32

Symbols

_empty .Test. => final object Test extends AnyRef { +1 decls }
_empty .Test.main(). => method main(args: Array[String]): Unit
_empty .Test.main().(args) => param args: Array[String]

33

[0:7..0:11): Test <= _empty .Test.

[1:6..1:10): main <= _empty .Test.main().
[1:11..1:15): args <= _empty .Test.main().(args)
[1:17..1:22): Array => scala.Array#
[1:23..1:29): String => scala.Predef.String#
[1:33..1:37): Unit => scala.Unit#

[2:4..2:11): println => scala.Predef.println(+1).

34

To learn more

e Check out “SemanticDB for Scala developer tools” by Olafur Pall
Geirsson (ScalaSphere 2018)

e Detailed examples of SemanticDB payloads

e Introduction to CLI utilities to work with SemanticDB

e Overview of existing tools based on SemanticDB

35

Rolling our own semantic tools

36

Opensource tools

e Metadoc (code browsing)
e Metals (code browsing and interactive development)
e Scalafix (code linting and refactoring)

Developed by Olafur Pall Geirsson and a community of opensource
contributors based on Scalameta

37

Company-wide semantic index

SemanticDB doesn’t require a compiler instance

Therefore can be made extremely fast even on huge codebases

SQLite indexes take ~500Mb per 1Mloc and provide ~10ms query times
Using different storage technology at Twitter, with similar characteristics

38

Company-wide language server

e Experimental LSP implementation backed by the semantic index
e Implements textDocument/definition and textDocument/references

39

Code browsing

e Experimental Intellij IDEA plugin with custom “Go to definition” and “Find
references” powered by the company-wide language server
e Finally, an IDE that can handle the entire Twitter source

40

Code review

e Upstream improvements to DiffusionExternalSymbolsSource to take

source positions into account
e Experimental implementation of a symbol source powered by the
company-wide language server

41

Code evolution

e Upstream Scalafix, closely following cutting edge milestone builds

e Distributed Scalafix to run code rewrites across the entire Twitter source

e To learn more, check out “Scalafix @ Twitter scale” by Uma Srinivasan
(Typelevel Summit Boston 2018)

42

Summary

43

Advanced Scala Tools team was founded to improve code browsing,
code review and code evolution in the Twitter development workflow
We use SemanticDB - an opensource interchange format for semantic
information developed by Eugene Burmako and Olafur Pall Geirsson
We have implemented experimental improvements to multiple areas of
interest, integrating opensource and closed-source solutions

44

We are hiring!

e Are you interested in compilers and developer tools?
e Are you ready to get your hands dirty to make things happen?
e Drop Eugene Burmako an email: eburmako@twitter.com

45

mailto:eburmako@twitter.com

