
How We Built Tools That Scale to
Millions of Lines of Code
Eugene Burmako
Twitter, Inc.

6/20/2018

About me

● Founder of Scala macros, Scalameta and Rsc
● Member of the Scala Improvement Process committee
● PhD from Martin Odersky’s lab at EPFL (2011-2016)
● Tech lead of the Advanced Scala Tools team at Twitter (2017-present)

2

Credits

3

Core contributors

4

Advanced Scala Tools team at Twitter:

● Eugene Burmako
● Shane Delmore
● Uma Srinivasan

Early adopters

● Build team
● Continuous Integration team
● Code Review team
● Core Data Libraries team
● Core Systems Libraries team
● Other folks at Twitter

5

6

7

Problem statement

Huge codebase (ca. 2017)

8

● ~2^25 lines of human-written code
● ~2^16 targets

Need for semantic tooling (ca. 2017)

● Not enough to treat programs like text
● Need to understand semantics:

○ What does this identifier resolve to?
○ What are all the usages of this definition?
○ What is the type of this expression?
○ Etc etc.

9

Prioritized user asks (ca. 2017)

● Code browsing
● Code review
● Code evolution

10

State of semantic tooling (ca. 2017)

● Code browsing = IDEs, but IDEs couldn't load entire Twitter source
● Code review = Phabricator, which didn’t have Scala integration
● Code evolution = scala-refactoring, which didn’t have a maintainer
● Also, several proprietary solutions with varied Scala support

11

Advanced Scala Tools team

● Founded in June 2017
● Mission: “Raise the bar on what is possible for an effective Scala

development environment both at Twitter and in the Scala community”
● Roadmap: improve code browsing, code review and code evolution in the

Twitter development workflow

12

Existing semantic APIs

13

Existing semantic APIs (ca. 2017)

14

● Scala compiler internals
● Scala.reflect (thin wrapper over compiler internals)
● ScalaSignatures (serialization format for compiler internals)

Blocker #1: Learning curve

● Compiler internals span dozens of modules and thousands of methods
● Complicated data model and arcane preconditions for the APIs
● I did a PhD in Scalac internals, but still can’t make sense of all that

15

Blocker #2: Scarce documentation

● Scala requires an extensive semantic API
● This requires lots and lots of documentation
● Even for scala.reflect, the documentation is significantly lagging behind

16

Blocker #3: Compiler instance

● Compiler internals require a compiler instance
● This means poor performance even for simple operations like “Go to

definition” or “Find all usages”
● Tools that use Scala compiler internals either roll their own indexer or

accept the limitations

17

Future semantic APIs

18

Future semantic APIs (ca. 2020)

● Scala.reflect is based on Scala compiler internals, so it was discarded
● Meet Tasty - serialization format for Dotty compiler internals
● Used in Dotty IDE and the upcoming Dotty macro system

19

library/src/scala/tasty/Tasty.scala

abstract class Tasty {
 ...

 // DefDef
 type DefDef <: Definition
 implicit def defDefClassTag: ClassTag[DefDef]
 val DefDef: DefDefExtractor

 ...
}

20

library/src/scala/tasty/Universe.scala

trait Universe {
 val tasty: Tasty
 implicit val context: tasty.Context
}

object Universe {
 implicit def compilationUniverse: Universe = throw new
Exception("Not in inline macro.")
}

21

compiler/.../CompilationUniverse.scala

import dotty.tools.dotc.core.Contexts.Context

class CompilationUniverse(val context: Context) extends
scala.tasty.Universe {
 val tasty: TastyImpl.type = TastyImpl
}

22

Summary

● In its current form, Tasty looks very similar to scala.reflect, but
reimplemented for Dotty

● Still based on compiler internals
● Still underdocumented
● Still requires a compiler instance

23

Rolling our own semantic APIs

24

Scalameta (ca. 2018)

26

● More than 10 projects
● More than 10000 commits
● More than 200 contributors
● Funded by Twitter and Scala Center

SemanticDB

● Data model for semantic information about programs
● Focused on what tool writers need from the compiler...
● ...not on what is convenient to expose in the compiler
● Collaboration between Eugene Burmako (a compiler writer) and Ólafur Páll

Geirsson (a tool writer)

27

Interchange format

message TextDocument {
 Schema schema = 1;
 string uri = 2;
 string text = 3;
 Language language = 10;
 repeated SymbolInformation symbols = 5;
 repeated SymbolOccurrence occurrences = 6;
 repeated Diagnostic diagnostics = 7;
 repeated Synthetic synthetics = 8;
}

28

Example

object Test {
 def main(args: Array[String]): Unit = {
 println("hello world")
 }
}

29

Workflow

$ scalac -Xplugin:our/plugin.jar Test.scala
// Alternatively: metac Test.scala

$ find .
./META-INF
./META-INF/Test.scala.semanticdb
./Test.scala

30

Payload

$ xxd META-INF/semanticdb/Test.scala.semanticdb
00000000: 0ae4 0408 0312 0a54 6573 742e 7363 616c Test.scal
00000010: 611a 596f 626a 6563 7420 5465 7374 207b a.Yobject Test {
00000020: 0a20 2064 6566 206d 6169 6e28 6172 6773 . def main(args
00000030: 3a20 4172 7261 795b 5374 7269 6e67 5d29 : Array[String])
00000040: 3a20 556e 6974 203d 207b 0a20 2020 2070 : Unit = {. p
00000050: 7269 6e74 6c6e 2822 6865 6c6c 6f20 776f rintln("hello wo
00000060: 726c 6422 290a 2020 7d0a 7d0a 2a5b 0a1a rld"). }.}.*[..
00000070: 5f65 6d70 7479 5f2e 5465 7374 2e6d 6169 _empty_.Test.mai
00000080: 6e28 292e 2861 7267 7329 1808 2a04 6172 n().(args)..*.ar
...

31

Payload

$ metap .

Summary:
Schema => SemanticDB v3
Uri => Test.scala
Text => non-empty
Language => Scala
Symbols => 3 entries
Occurrences => 7 entries

32

Symbols

empty.Test. => final object Test extends AnyRef { +1 decls }
empty.Test.main(). => method main(args: Array[String]): Unit
empty.Test.main().(args) => param args: Array[String]

33

Occurrences

[0:7..0:11): Test <= _empty_.Test.
[1:6..1:10): main <= _empty_.Test.main().
[1:11..1:15): args <= _empty_.Test.main().(args)
[1:17..1:22): Array => scala.Array#
[1:23..1:29): String => scala.Predef.String#
[1:33..1:37): Unit => scala.Unit#
[2:4..2:11): println => scala.Predef.println(+1).

34

To learn more

● Check out “SemanticDB for Scala developer tools” by Ólafur Páll
Geirsson (ScalaSphere 2018)

● Detailed examples of SemanticDB payloads
● Introduction to CLI utilities to work with SemanticDB
● Overview of existing tools based on SemanticDB

35

Rolling our own semantic tools

36

Opensource tools

37

● Metadoc (code browsing)
● Metals (code browsing and interactive development)
● Scalafix (code linting and refactoring)

Developed by Ólafur Páll Geirsson and a community of opensource
contributors based on Scalameta

Company-wide semantic index

● SemanticDB doesn’t require a compiler instance
● Therefore can be made extremely fast even on huge codebases
● SQLite indexes take ~500Mb per 1Mloc and provide ~10ms query times
● Using different storage technology at Twitter, with similar characteristics

38

Company-wide language server

● Experimental LSP implementation backed by the semantic index
● Implements textDocument/definition and textDocument/references

39

Code browsing

● Experimental Intellij IDEA plugin with custom “Go to definition” and “Find
references” powered by the company-wide language server

● Finally, an IDE that can handle the entire Twitter source

40

Code review

● Upstream improvements to DiffusionExternalSymbolsSource to take
source positions into account

● Experimental implementation of a symbol source powered by the
company-wide language server

41

Code evolution

● Upstream Scalafix, closely following cutting edge milestone builds
● Distributed Scalafix to run code rewrites across the entire Twitter source
● To learn more, check out “Scalafix @ Twitter scale” by Uma Srinivasan

(Typelevel Summit Boston 2018)

42

Summary

43

Summary

44

● Advanced Scala Tools team was founded to improve code browsing,
code review and code evolution in the Twitter development workflow

● We use SemanticDB - an opensource interchange format for semantic
information developed by Eugene Burmako and Ólafur Páll Geirsson

● We have implemented experimental improvements to multiple areas of
interest, integrating opensource and closed-source solutions

We are hiring!

● Are you interested in compilers and developer tools?
● Are you ready to get your hands dirty to make things happen?
● Drop Eugene Burmako an email: eburmako@twitter.com

45

mailto:eburmako@twitter.com

